کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595315 | 1335808 | 2007 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Primitive roots in quadratic fields, II
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider an analogue of Artin's primitive root conjecture for algebraic numbers which are not units in quadratic fields. Given such an algebraic number α, for a rational prime p which is inert in the field, the maximal possible order of α modulo (p) is p2−1. An extension of Artin's conjecture is that there are infinitely many such inert primes for which this order is maximal. We show that for any choice of 113 algebraic numbers satisfying a certain simple restriction, at least one of the algebraic numbers has order at least for infinitely many inert primes p.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 124, Issue 2, June 2007, Pages 429-441
Journal: Journal of Number Theory - Volume 124, Issue 2, June 2007, Pages 429-441