کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595338 1335810 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
n-Torsion of Brauer groups as relative Brauer groups of abelian extensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
n-Torsion of Brauer groups as relative Brauer groups of abelian extensions
چکیده انگلیسی

It is now known [H. Kisilevsky, J. Sonn, Abelian extensions of global fields with constant local degrees, Math. Res. Lett. 13 (4) (2006) 599–607; C.D. Popescu, Torsion subgroups of Brauer groups and extensions of constant local degree for global function fields, J. Number Theory 115 (2005) 27–44] that if F is a global field, then the n-torsion subgroup of its Brauer group Br(F) equals the relative Brauer group Br(Ln/F) of an abelian extension Ln/F, for all n∈Z⩾1. We conjecture that this property characterizes the global fields within the class of infinite fields which are finitely generated over their prime fields. In the first part of this paper, we make a first step towards proving this conjecture. Namely, we show that if F is a non-global infinite field, which is finitely generated over its prime field and ℓ≠char(F) is a prime number such that μℓ2⊆F×, then there does not exist an abelian extension L/F such that . The second and third parts of this paper are concerned with a close analysis of the link between the hypothesis μℓ2⊆F× and the existence of an abelian extension L/F such that , in the case where F is a Henselian valued field.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 125, Issue 1, July 2007, Pages 26-38