کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595359 1335811 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A realization theorem for sets of lengths
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A realization theorem for sets of lengths
چکیده انگلیسی

TextBy a result of G. Freiman and A. Geroldinger [G. Freiman, A. Geroldinger, An addition theorem and its arithmetical application, J. Number Theory 85 (1) (2000) 59–73] it is known that the set of lengths of factorizations of an algebraic integer (in the ring of integers of an algebraic number field), or more generally of an element of a Krull monoid with finite class group, has a certain structure: it is an almost arithmetical multiprogression for whose difference and bound only finitely many values are possible, and these depend just on the class group. We establish a sort of converse to this result, showing that for each choice of finitely many differences and of a bound there exists some number field such that each almost arithmetical multiprogression with one of these difference and that bound is up to shift the set of lengths of an algebraic integer of that number field. Moreover, we give an explicit sufficient condition on the class group of the number field for this to happen.VideoFor a video summary of this paper, please visit http://www.youtube.com/watch?v=c61xM-5D6Do.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 5, May 2009, Pages 990–999
نویسندگان
,