کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595372 1335811 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the zeta function of divisors for projective varieties with higher rank divisor class group
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the zeta function of divisors for projective varieties with higher rank divisor class group
چکیده انگلیسی

Given a projective variety X defined over a finite field, the zeta function of divisors attempts to count all irreducible, codimension one subvarieties of X, each measured by their projective degree. When the dimension of X is greater than one, this is a purely p-adic function, convergent on the open unit disk. Four conjectures are expected to hold, the first of which is p-adic meromorphic continuation to all of Cp. When the divisor class group (divisors modulo linear equivalence) of X has rank one, then all four conjectures are known to be true. In this paper, we discuss the higher rank case. In particular, we prove a p-adic meromorphic continuation theorem which applies to a large class of varieties. Examples of such varieties are projective nonsingular surfaces defined over a finite field (whose effective monoid is finitely generated) and all projective toric varieties (smooth or singular).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 5, May 2009, Pages 1161-1177