کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595436 1335815 2009 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective equidistribution of eigenvalues of Hecke operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Effective equidistribution of eigenvalues of Hecke operators
چکیده انگلیسی

In 1997, Serre proved an equidistribution theorem for eigenvalues of Hecke operators on the space S(N,k) of cusp forms of weight k and level N. In this paper, we derive an effective version of Serre's theorem. As a consequence, we estimate, for a given d and prime p coprime to N, the number of eigenvalues of the pth Hecke operator Tp acting on S(N,k) of degree less than or equal to d. This allows us to determine an effectively computable constant Bd such that if J0(N) is isogenous to a product of Q-simple abelian varieties of dimensions less than or equal to d, then N⩽Bd. We also study the effective equidistribution of eigenvalues of Frobenius acting on a family of curves over a fixed finite field as well as the eigenvalue distribution of adjacency matrices of families of regular graphs. These results are derived from a general “all-purpose” equidistribution theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 3, March 2009, Pages 681-714