کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595484 | 1335819 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On lower bounds on the size of sums-of-squares formulas
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For sums-of-squares formulas of the form(x12+⋯+xr2)(y12+⋯+ys2)=z12+⋯+zt2 where the zizi are bilinear functions of the xixi and yiyi. Let L(r,s)L(r,s) denote the smallest possible value of t allowing such a formula to hold. We have two well-known lower bounds on the size of L(r,s)L(r,s). One was obtained independently by Hopf and Stiefel, and another by Atiyah. These bounds are given by requiring certain binomial coefficients be divisible by certain powers of 2. Although the behavior of the Hopf–Stiefel bound is fairly well understood, the Atiyah bound is not. In this paper we provide an efficient algorithm for computing the Atiyah bound and some results on which of the lower bounds is larger.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 128, Issue 3, March 2008, Pages 639–644
Journal: Journal of Number Theory - Volume 128, Issue 3, March 2008, Pages 639–644
نویسندگان
Daniel M. Kane,