کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595493 | 1335820 | 2007 | 22 صفحه PDF | دانلود رایگان |

We extend the results of uniform distribution modulo 1 given in [B. Rittaud, Équidistribution presque partout modulo 1 de suites oscillantes perturbées, Bull. Soc. Math. France 128 (2000) 451–471; B. Rittaud, Équidistribution presque partout modulo 1 de suites oscillantes perturbées, II: Cas Liouvillien unidimensionnel, Colloq. Math. 96 (1) (2003) 55–73], which deal with sequences of the form , where (hn)n, and are polynomially increasing sequences, (εn)n a bounded sequence, essentially a C3-function Zd-periodic, Θ an element of Rd and t a real number. We remove the Diophantine hypothesis on Θ needed in [the first of above mentioned articles], and add a technical hypothesis on hn. We apply this result to the convergence of diagonal averages for d×d matrices.
Journal: Journal of Number Theory - Volume 122, Issue 2, February 2007, Pages 261-282