کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595502 1335820 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Scholz theorem in function fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Scholz theorem in function fields
چکیده انگلیسی

The Scholz theorem in function fields states that the l-rank difference between the class groups of an imaginary quadratic function field and its associated real quadratic function field is either 0 or 1 for some prime l. Furthermore, Leopoldt's Spiegelungssatz (= the Reflection theorem) in function fields yields a comparison between the m-rank of some subgroup of the class group of an imaginary cyclic function field L1 and the m-rank of some subgroup of the class group of its associated real cyclic function field L2 for some prime number m; then their m-ranks also equal or differ by 1. In this paper we find an explicit necessary condition for their m-ranks (respectively l-ranks) to be the same in the case of cyclic function fields (respectively quadratic function fields). In particular, in the case of quadratic function fields, if l does not divide the regulator of L2, then their l-ranks are the same, equivalently if their l-ranks differ by 1, then l divides the regulator of L2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 122, Issue 2, February 2007, Pages 408-414