کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595513 1335821 2006 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Height difference bounds for elliptic curves over number fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Height difference bounds for elliptic curves over number fields
چکیده انگلیسی

Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height on E and be the canonical height on E. Bounds for the difference are of tremendous theoretical and practical importance. It is possible to decompose as a weighted sum of continuous bounded functions Ψυ:E(Kυ)→R over the set of places υ of K. A standard method for bounding , (due to Lang, and previously employed by Silverman) is to bound each function Ψυ and sum these local ‘contributions’.In this paper, we give simple formulae for the extreme values of Ψυ for non-archimedean υ in terms of the Tamagawa index and Kodaira symbol of the curve at υ.For real archimedean υ a method for sharply bounding Ψυ was previously given by Siksek [Rocky Mountain J. Math. 25(4) (1990) 1501]. We complement this by giving two methods for sharply bounding Ψυ for complex archimedean υ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 116, Issue 1, January 2006, Pages 42-68