کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595553 1335823 2007 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the GLY Conjecture of upper estimate of positive integral points in real right-angled simplices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the GLY Conjecture of upper estimate of positive integral points in real right-angled simplices
چکیده انگلیسی

The GLY (Granville–Lin–Yau) Conjecture is a generalization of Lin, Xu and Yau's results. An important application of GLY is its use in characterizing an affine hypersurface in Cn as a cone over a nonsingular projective variety. In addition, the Rough Upper Estimate Conjecture in GLY, recently proved by Yau and Zhang, implies the Durfee Conjecture in singularity theory. This paper develops a unified approach to prove the Sharp Upper Estimate Conjecture for general n. Using this unified approach, we prove that the Sharp Upper Estimate Conjecture is true for n=4,5,6. After giving a counter-example to show that the Sharp Upper Estimate Conjecture is not true for n=7, we propose a Modified GLY Conjecture. For each fixed n, our unified approach can be used to prove this Modified GLY Conjecture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 122, Issue 1, January 2007, Pages 184-210