کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595583 | 1335827 | 2007 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximation by polynomials with bounded coefficients
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let θ be a real number satisfying 1<θ<2, and let A(θ) be the set of polynomials with coefficients in {0,1}, evaluated at θ. Using a result of Bugeaud, we prove by elementary methods that θ is a Pisot number when the set (A(θ)−A(θ)−A(θ)) is discrete; the problem whether Pisot numbers are the only numbers θ such that 0 is not a limit point of (A(θ)−A(θ)) is still unsolved. We also determine the three greatest limit points of the quantities , where C(θ) is the set of polynomials with coefficients in {−1,1}, evaluated at θ, and we find in particular infinitely many Perron numbers θ such that the sets C(θ) are discrete.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 127, Issue 1, November 2007, Pages 103-117
Journal: Journal of Number Theory - Volume 127, Issue 1, November 2007, Pages 103-117