کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4604157 1337420 2014 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gradient integrability and rigidity results for two-phase conductivities in two dimensions
ترجمه فارسی عنوان
انعطاف پذیری و استحکام گرادیان موجب هدایت دو مرحله ای در دو بعد می شود
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

This paper deals with higher gradient integrability for σ-harmonic functions u with discontinuous coefficients σ  , i.e. weak solutions of div(σ∇u)=0div(σ∇u)=0 in dimension two. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti and Nesi. When only the ellipticity is fixed and σ is otherwise unconstrained, the optimal exponent is established, in the strongest possible way of the existence of so-called exact solutions, via the exhibition of optimal microgeometries.We focus also on two-phase conductivities, i.e., conductivities assuming only two matrix values, σ1σ1 and σ2σ2, and study the higher integrability of the corresponding gradient field |∇u||∇u| for this special but very significant class. The gradient field and its integrability clearly depend on the geometry, i.e., on the phases arrangement described by the sets Ei=σ−1(σi)Ei=σ−1(σi). We find the optimal integrability exponent of the gradient field corresponding to any pair {σ1,σ2}{σ1,σ2} of elliptic matrices, i.e., the worst among all possible microgeometries.We also treat the unconstrained case when an arbitrary but finite number of phases are present.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 3, May–June 2014, Pages 615–638
نویسندگان
, , ,