کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4606203 | 1337689 | 2012 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Integrability and conservation laws for two systems of hydrodynamic type derived from the Toda and Volterra systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove that two particular systems of hydrodynamic type can be represented as systems of conservation laws, and that they decouple into non-interacting integrable subsystems. The systems of hydrodynamic type in question were previously constructed, via a matrix partial differential equation, from the Lax pairs for the classical Toda and Volterra systems. The decoupling is guaranteed by the vanishing of the Nijenhuis tensor for each system; integrability of the non-interacting subsystems, thus each system as a whole, is proven for low eigenvalue multiplicities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 30, Issue 5, October 2012, Pages 371–381
Journal: Differential Geometry and its Applications - Volume 30, Issue 5, October 2012, Pages 371–381
نویسندگان
Patrick Reynolds,