کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608464 1338355 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On integration methods based on scrambled nets of arbitrary size
ترجمه فارسی عنوان
در روشهای تلفیقی مبتنی بر شبکه های مسدود شده از اندازه دلخواه
کلمات کلیدی
ادغام، تصادفی تقریبا مونت کارلو، تقلب کردن ماتریکه شبه مونت کارلو
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We consider the problem of evaluating I(φ):=∫[0,1)sφ(x)dx for a function φ∈L2[0,1)sφ∈L2[0,1)s. In situations where I(φ)I(φ) can be approximated by an estimate of the form N−1∑n=0N−1φ(xn), with {xn}n=0N−1 a point set in [0,1)s[0,1)s, it is now well known that the OP(N−1/2)OP(N−1/2) Monte Carlo convergence rate can be improved by taking for {xn}n=0N−1 the first N=λbmN=λbm points, λ∈{1,…,b−1}λ∈{1,…,b−1}, of a scrambled (t,s)(t,s)-sequence in base b≥2b≥2. In this paper we derive a bound for the variance of scrambled net quadrature rules which is of order O(N−1)O(N−1) without any restriction on NN. As a corollary, this bound allows us to provide simple conditions to get, for any pattern of NN, an integration error of size OP(N−1/2)OP(N−1/2) for functions that depend on the quadrature size NN. Notably, we establish that sequential quasi-Monte Carlo (Gerber & Chopin, 2015) reaches the OP(N−1/2)OP(N−1/2) convergence rate for any values of NN. In a numerical study, we show that for scrambled net quadrature rules we can relax the constraint on NN without any loss of efficiency when the integrand φφ is a discontinuous function while, for sequential quasi-Monte Carlo, taking N=λbmN=λbm may only provide moderate gains.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 31, Issue 6, December 2015, Pages 798–816
نویسندگان
,