کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608671 1338371 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time
ترجمه فارسی عنوان
حساسیت فشرده با ماتریس های دودویی کوچک. خطای مطلوب نمونه در زمان نزدیک به مطلوب تضمین می شود
کلمات کلیدی
سنجش فشرده، الگوریتم های زمان خطی، ماتریس های انعطاف پذیر
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

A compressed sensing method consists of a rectangular measurement matrix, M∈Rm×NM∈Rm×N with m≪Nm≪N, together with an associated recovery algorithm, A:Rm→RNA:Rm→RN. Compressed sensing methods aim to construct a high quality approximation to any given input vector x∈RN using only Mx∈Rm as input. In particular, we focus herein on instance optimal nonlinear approximation error bounds for MM and AA of the form ‖x−A(Mx)‖p≤‖x−xkopt‖p+Ck1/p−1/q‖x−xkopt‖q for x∈RN, where xkopt is the best possible kk-term approximation to x.In this paper we develop a compressed sensing method whose associated recovery algorithm, AA, runs in O((klogk)logN)O((klogk)logN)-time, matching a lower bound up to a O(logk)O(logk) factor. This runtime is obtained by using a new class of sparse binary compressed sensing matrices of near optimal size in combination with sublinear-time recovery techniques motivated by sketching algorithms for high-volume data streams. The new class of matrices is constructed by randomly subsampling rows from well-chosen incoherent matrix constructions which already have a sub-linear number of rows. As a consequence, fewer random bits than previously required are needed in order to select the rows utilized by the fast reconstruction algorithms considered herein.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 30, Issue 1, February 2014, Pages 1–15
نویسندگان
,