کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608715 1338375 2013 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Arithmetic Poisson Formula for the multi-variate resultant
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
An Arithmetic Poisson Formula for the multi-variate resultant
چکیده انگلیسی

In these pages we compute the expectation of several functions of multi-variate complex polynomials. The common thread of all our outcomes is the basic technique used in their proofs. The used techniques combine essentially the unitary invariance of Bombieri–Weyl’s Hermitian product and some elementary Integral Geometry. Using different combinations of these techniques we compute the expectation of the logarithm of the absolute value of an affine polynomial and we compute the expected value of Akatsuka Zeta Mahler’s measure. As main consequences of these results and techniques, we show a probabilistic answer to question (d)(d) in Armentano and Shub (2012)  [2], concerning the complexity of one point homotopy, and an Arithmetic Poisson Formula for the multi-variate resultant. These two last statements and bounds are related to the complexity of algorithms for polynomial equation solving.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 29, Issue 5, October 2013, Pages 323–350
نویسندگان
, ,