کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4608752 | 1338378 | 2010 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2L2 and other norms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the optimal approximation of the solution of an operator equation A(u)=fA(u)=f by linear and different types of nonlinear mappings. In our earlier papers we only considered the error with respect to a certain HsHs-norm where ss was given by the operator since we assumed that A:H0s(Ω)→H−s(Ω) is an isomorphism. The most typical case here is s=1s=1. It is well known that for certain regular problems the order of convergence is improved if one takes the L2L2-norm. In this paper we study error bounds with respect to such a weaker norm, i.e., we assume that H0s(Ω) is continuously embedded into a space XX and we measure the error in the norm of XX. A major example is X=L2(Ω)X=L2(Ω) or X=Hr(Ω)X=Hr(Ω) with r
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 26, Issue 1, February 2010, Pages 102–124
Journal: Journal of Complexity - Volume 26, Issue 1, February 2010, Pages 102–124
نویسندگان
Stephan Dahlke, Erich Novak, Winfried Sickel,