کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608764 1338379 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical properties of generalized discrepancies on spheres of arbitrary dimension
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Numerical properties of generalized discrepancies on spheres of arbitrary dimension
چکیده انگلیسی

Quantifying uniformity of a configuration of points on the sphere is an interesting topic that is receiving growing attention in numerical analysis. An elegant solution has been provided by Cui and Freeden [J. Cui, W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput. 18 (2) (1997) 595–609], where a class of discrepancies, called generalized discrepancies   and originally associated with pseudodifferential operators on the unit sphere in R3R3, has been introduced. The objective of this paper is to extend to the sphere of arbitrary dimension this class of discrepancies and to study their numerical properties. First we show that generalized discrepancies are diaphonies on the hypersphere. This allows us to completely characterize the sequences of points for which convergence to zero of these discrepancies takes place. Then we discuss the worst-case error of quadrature rules and we derive a result on tractability of multivariate integration on the hypersphere. At last we provide several versions of Koksma–Hlawka type inequalities for integration of functions defined on the sphere.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 29, Issue 2, April 2013, Pages 216–235
نویسندگان
, ,