کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4608840 | 1338385 | 2008 | 29 صفحه PDF | دانلود رایگان |

One kind of the L-average Lipschitz condition is introduced to covariant derivatives of sections on Riemannian manifolds. A convergence criterion of Newton's method and the radii of the uniqueness balls of the singular points for sections on Riemannian manifolds, which is independent of the curvatures, are established under the assumption that the covariant derivatives of the sections satisfy this kind of the L-average Lipschitz condition. Some applications to special cases including Kantorovich's condition and the γ-condition as well as Smale's α-theory are provided. In particular, the result due to Ferreira and Svaiter [Kantorovich's Theorem on Newton's method in Riemannian manifolds, J. Complexity 18 (2002) 304–329] is extended while the results due to Dedieu Priouret, Malajovich [Newton's method on Riemannian manifolds: covariant alpha theory, IMA J. Numer. Anal. 23 (2003) 395–419] are improved significantly. Moreover, the corresponding results due to Alvarez, Bolter, Munier [A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math. to appear] for vector fields and mappings on Riemannian manifolds are also extended.
Journal: Journal of Complexity - Volume 24, Issue 3, June 2008, Pages 423-451