کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4608979 1338395 2010 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands
چکیده انگلیسی

We study the multivariate integration problem ∫Rdf(x)ρ(x)dx, with ρρ being a product of univariate probability density functions. We assume that ff belongs to a weighted tensor-product reproducing kernel Hilbert space of functions whose mixed first derivatives, when multiplied by a weight function ψψ, have bounded L2L2-norms. After mapping into the unit cube [0,1]d[0,1]d, the transformed integrands are typically unbounded or have huge derivatives near the boundary, and thus fail to lie in the usual function space setting where many good results have been established. In our previous work, we have shown that randomly shifted lattice rules can be constructed component-by-component to achieve a worst case error bound of order O(n−1/2)O(n−1/2) in this new function space setting. Using a more clever proof technique together with more restrictive assumptions, in this article we improve the results by proving that a rate of convergence close to the optimal order O(n−1)O(n−1) can be achieved with an appropriate choice of parameters for the function space. The implied constants in the big-OO bounds can be independent of dd under appropriate conditions on the weights of the function space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 26, Issue 2, April 2010, Pages 135–160
نویسندگان
, , , ,