کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609029 | 1338402 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Some lower bounds for the complexity of the linear programming feasibility problem over the reals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We analyze the arithmetic complexity of the linear programming feasibility problem over the reals. For the case of polyhedra defined by 2n2n half-spaces in Rn we prove that the set I(2n,n)I(2n,n), of parameters describing nonempty polyhedra, has an exponential number of limiting hypersurfaces . From this geometric result we obtain, as a corollary, the existence of a constant c>1c>1 such that, if dense or sparse representation is used to code polynomials, the length of any quantifier-free formula expressing the set I(2n,n)I(2n,n) is bounded from below by Ω(cn)Ω(cn). Other related complexity results are stated; in particular, a lower bound for algebraic computation trees based on the notion of limiting hypersurface is presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 25, Issue 1, February 2009, Pages 25–37
Journal: Journal of Complexity - Volume 25, Issue 1, February 2009, Pages 25–37
نویسندگان
Rafael Grimson, Bart Kuijpers,