کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609045 1338404 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety
چکیده انگلیسی

We extend the lower bounds on the complexity of computing Betti numbers proved in [P. Bürgisser, F. Cucker, Counting complexity classes for numeric computations II: algebraic and semialgebraic sets, J. Complexity 22 (2006) 147–191] to complex algebraic varieties. More precisely, we first prove that the problem of deciding connectedness of a complex affine or projective variety given as the zero set of integer polynomials is PSPACE-hard. Then we prove PSPACE-hardness for the more general problem of deciding whether the Betti number of fixed order of a complex affine or projective variety is at most some given integer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 23, Issue 3, June 2007, Pages 359-379