کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609054 1338405 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal learning rates for least squares regularized regression with unbounded sampling
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Optimal learning rates for least squares regularized regression with unbounded sampling
چکیده انگلیسی

A standard assumption in theoretical study of learning algorithms for regression is uniform boundedness of output sample values. This excludes the common case with Gaussian noise. In this paper we investigate the learning algorithm for regression generated by the least squares regularization scheme in reproducing kernel Hilbert spaces without the assumption of uniform boundedness for sampling. By imposing some incremental conditions on moments of the output variable, we derive learning rates in terms of regularity of the regression function and capacity of the hypothesis space. The novelty of our analysis is a new covering number argument for bounding the sample error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 27, Issue 1, February 2011, Pages 55–67
نویسندگان
, ,