کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609081 1338408 2007 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of computing the logarithm and square root functions on a complex domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the complexity of computing the logarithm and square root functions on a complex domain
چکیده انگلیسی

The problems of computing single-valued, analytic branches of the logarithm and square root functions on a bounded, simply connected domain S are studied. If the boundary ∂S of S is a polynomial-time computable Jordan curve, the complexity of these problems can be characterized by counting classes #P, MP (or MidBitP), and ⊕P: The logarithm problem is polynomial-time solvable if and only if FP=#P. For the square root problem, it has been shown to have the upper bound PMP and lower bound P⊕P. That is, if P=MP then the square root problem is polynomial-time solvable, and if P≠⊕P then the square root problem is not polynomial-time solvable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 23, Issue 1, February 2007, Pages 2-24