کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609138 1338414 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of finding circumscribed rectangles and squares for a two-dimensional domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the complexity of finding circumscribed rectangles and squares for a two-dimensional domain
چکیده انگلیسی

We investigate the computational complexity of finding the minimum-area circumscribed rectangle of a given two-dimensional domain. We study this problem in the polynomial-time complexity theory of real functions based on the oracle Turing machine model. We show that a bounded domain S with a polynomial-time computable Jordan curve Γ as the boundary may not have a computable minimum-area circumscribed rectangle. We also show that the problem of finding the minimum area of a circumscribed rectangle of a polynomial-time computable Jordan curve Γ is equivalent to a discrete -complete problem. The related problem of finding the circumscribed squares of a Jordan curve Γ is also studied. We show that for any polynomial-time computable Jordan curve Γ, there must exist at least one computable circumscribed square (not necessarily of the minimum area), but this square may have arbitrarily high complexity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 22, Issue 6, December 2006, Pages 803-817