کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609140 | 1338414 | 2006 | 23 صفحه PDF | دانلود رایگان |

A function f is continuous iff the pre-image f-1[V] of any open set V is open again. Dual to this topological property, f is called open iff the image f[U] of any open set U is open again. Several classical open mapping theorems in analysis provide a variety of sufficient conditions for openness.By the main theorem of recursive analysis, computable real functions are necessarily continuous. In fact they admit a well-known characterization in terms of the mapping V↦f-1[V] being effective: given a list of open rational balls exhausting V, a Turing Machine can generate a corresponding list for f-1[V]. Analogously, effective openness requires the mapping U↦f[U] on open real subsets to be effective.The present work combines real analysis with algebraic topology and Tarski's quantifier elimination to effectivize classical open mapping theorems and to establish several rich classes of real functions as effectively open.
Journal: Journal of Complexity - Volume 22, Issue 6, December 2006, Pages 827-849