کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609161 1338416 2006 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of parabolic initial-value problems with variable drift
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the complexity of parabolic initial-value problems with variable drift
چکیده انگلیسی

We study the intrinsic difficulty of solving linear parabolic initial-value problems numerically at a single point. We present a worst-case analysis for deterministic as well as for randomized (or Monte Carlo) algorithms, assuming that the drift coefficients and the potential vary in given function spaces. We use fundamental solutions (parametrix method) for equations with unbounded coefficients to relate the initial-value problem to multivariate integration and weighted approximation problems. Hereby we derive lower and upper bounds for the minimal errors. The upper bounds are achieved by algorithms that use Smolyak formulas and, in the randomized case, variance reduction. We apply our general results to equations with coefficients from Hölder classes, and here, in many cases, the upper and lower bounds almost coincide and our algorithms are almost optimal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 22, Issue 1, February 2006, Pages 118-145