کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609181 1631474 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning rates for regularized classifiers using multivariate polynomial kernels
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Learning rates for regularized classifiers using multivariate polynomial kernels
چکیده انگلیسی

Regularized classifiers (a leading example is support vector machine) are known to be a kind of kernel-based classification methods generated from Tikhonov regularization schemes, and the polynomial kernels are the original and also probably the most important kernels used in them. In this paper, we provide an error analysis for the regularized classifiers using multivariate polynomial kernels. We introduce Bernstein–Durrmeyer polynomials, whose reproducing kernel Hilbert space norms and approximation properties in L1L1 space play a key role in the analysis of regularization error. We also introduce the standard estimation of sample error, and derive explicit learning rates for these algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 24, Issues 5–6, October–December 2008, Pages 619–631
نویسندگان
, , ,