کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609192 | 1338431 | 2008 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Are unbounded linear operators computable on the average for Gaussian measures?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Traub and Werschulz [Complexity and Information, Cambridge University Press, New York, 1999] ask whether every linear operator S:⊆X→Y is “computable on the average” w.r.t. a Gaussian measure on X. The question is inspired by an analogous result in information-based complexity on the average-case solvability of linear approximation problems. We give several interpretations of Traub and Werschulz’ question within the framework of type-2 theory of effectivity. We have negative answers to all of these interpretations but the one with minimal requirements on the algorithm's uniformness. On our way to these results, we give an effective version of the Mourier–Prokhorov characterization of Gaussian measures on separable Hilbert spaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Complexity - Volume 24, Issue 4, August 2008, Pages 477-491
Journal: Journal of Complexity - Volume 24, Issue 4, August 2008, Pages 477-491