کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609293 1338505 2016 55 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces
ترجمه فارسی عنوان
اپراتورهای بیضوی خود به خود متصل با شرایط مرزی بر روی هیپرپلازی های بسته نشده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on RnRn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the “free” operator with domain H2(Rn)H2(Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ   and δ′δ′-type, assigned either on a (n−1)(n−1) dimensional compact boundary Γ=∂ΩΓ=∂Ω or on a relatively open part Σ⊂ΓΣ⊂Γ. Schatten–von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 1, 5 July 2016, Pages 1–55
نویسندگان
, , ,