کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613781 1339272 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong completeness and semi-flows for stochastic differential equations with monotone drift
ترجمه فارسی عنوان
کامل قوی و نیمه جریان ها برای معادلات دیفرانسیل تصادفی با رانش یکنواخت
کلمات کلیدی
جریان تصادفی؛ نیمه جریان تصادفی؛ معادله دیفرانسیل تصادفی؛ یکنواختی؛ کامل قوی؛ Δ-کامل قوی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

It is well-known that a stochastic differential equation (sde) on a Euclidean space driven by a (possibly infinite-dimensional) Brownian motion with Lipschitz coefficients generates a stochastic flow of homeomorphisms. If the Lipschitz condition is replaced by an appropriate one-sided Lipschitz condition (sometimes called monotonicity condition) and the number of driving Brownian motions is finite, then existence and uniqueness of global solutions for each fixed initial condition is also well-known. In this paper we show that under a slightly stronger one-sided Lipschitz condition the solutions still generate a stochastic semiflow which is jointly continuous in all variables (but which is generally neither one-to-one nor onto). We also address the question of strong Δ-completeness which means that there exists a modification of the solution which if restricted to any set A⊂RdA⊂Rd of dimension Δ is almost surely continuous with respect to the initial condition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 446, Issue 2, 15 February 2017, Pages 1555–1570
نویسندگان
, ,