کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613939 1339275 2016 48 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Free boundaries surfaces and Saddle towers minimal surfaces in S2×RS2×R
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Free boundaries surfaces and Saddle towers minimal surfaces in S2×RS2×R
چکیده انگلیسی

The aim of this work is to show that for each finite natural number l⩾2l⩾2 there exists a 1-parameter family of Saddle Tower type minimal surfaces embedded in S2×RS2×R, invariant with respect to a vertical translation. The genus of the quotient surface is 2l−12l−1. The proof is based on analytical techniques: precisely we desingularize of the union of γj×Rγj×R, j∈{1,…,2l}j∈{1,…,2l}, where γj⊂S2γj⊂S2 denotes a half great circle. These vertical cylinders intersect along a vertical straight line and its antipodal line. As byproduct of the construction we produce free boundary surfaces embedded in (S2)+×R(S2)+×R. Such surfaces are extended by reflection in ∂(S2)+×R∂(S2)+×R in order to get the minimal surfaces with the desired properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 443, Issue 1, 1 November 2016, Pages 478–525
نویسندگان
,