کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614022 1339278 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On extremal properties of Jacobian elliptic functions with complex modulus
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On extremal properties of Jacobian elliptic functions with complex modulus
چکیده انگلیسی

A thorough analysis of values of the function m↦sn(K(m)u|m)m↦sn(K(m)u|m) for complex parameter m   and u∈(0,1)u∈(0,1) is given. First, it is proved that the absolute value of this function never exceeds 1 if m   does not belong to the region in CC determined by inequalities |z−1|<1|z−1|<1 and |z|>1|z|>1. The global maximum of the function under investigation is shown to be always located in this region. More precisely, it is proved that if u≤1/2u≤1/2, then the global maximum is located at m=1m=1 with the value equal to 1. While if u>1/2u>1/2, then the global maximum is located in the interval (1,2)(1,2) and its value exceeds 1. In addition, more subtle extremal properties are studied numerically. Finally, applications in a Laplace-type integral and spectral analysis of some complex Jacobi matrices are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 442, Issue 2, 15 October 2016, Pages 627–641
نویسندگان
, ,