کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614149 1339281 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gradient estimates for nonlinear elliptic equations with vanishing Neumann data in quasiconvex domains
ترجمه فارسی عنوان
برآورد گرادیان برای معادلات بیضوی غیر خطی با داده های نایمن ناپایدار در حوزه های کوانسیوکربن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We study the conormal derivative problem for an elliptic equation of p-Laplacian type with discontinuous coefficients in a non-smooth domain in order to look for the minimal assumptions necessary to have the nonlinear Calderón–Zygmund theory for such problem. Under the assumptions that the nonlinear operator is sufficiently close to the p  -Laplacian operator in BMO semi-norm and the boundary of the domain can be locally approximated by the convex boundary, we prove that both the gradient and the associated nonhomogeneous term belong to the same LqLq space for every q∈[p,∞)q∈[p,∞). As far as the domain is concerned, our regularity assumption on the boundary is weaker than any other one reported in this direction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 443, Issue 2, 15 November 2016, Pages 868–890
نویسندگان
, ,