کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614300 1339286 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exponential pseudo-splines: Looking beyond exponential B-splines
ترجمه فارسی عنوان
شبه پین ​​های نمایشگر: به دنبال فراتر از بسط اسپینن های نمایشی است
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reproduction, a new family of functions is obtained. This new family is here constructed and called the family of exponential pseudo-splines. It is the nonstationary counterpart of (polynomial) pseudo-splines and includes exponential B-splines as a special subclass. In this work we provide a computational strategy for deriving the explicit expression of the Laurent polynomial sequence that identifies the family of exponential pseudo-spline nonstationary subdivision schemes. For this family we study its symmetry properties and perform its convergence and regularity analysis. Finally, we also show that the family of primal exponential pseudo-splines fills in the gap between exponential B-splines and interpolatory cardinal functions. This extends the analogous property of primal pseudo-spline stationary subdivision schemes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 439, Issue 1, 1 July 2016, Pages 32–56
نویسندگان
, , ,