کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614620 1339294 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence and localization in Orlicz classes for multiple Walsh–Fourier series with a lacunary sequence of rectangular partial sums
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Convergence and localization in Orlicz classes for multiple Walsh–Fourier series with a lacunary sequence of rectangular partial sums
چکیده انگلیسی

For functions f   in Orlicz classes, we consider multiple Walsh–Fourier series for which the rectangular partial sums Sn(x;f)Sn(x;f) have indices n=(n1,…,nN)∈ZNn=(n1,…,nN)∈ZN (N≥3N≥3), where either N   or N−1N−1 components are elements of (single) lacunary sequences. For this series, we prove the validity of weak generalized localization almost everywhere on an arbitrary measurable set A⊂IN={x∈RN:0≤xj<1,j=1,2,…,N}A⊂IN={x∈RN:0≤xj<1,j=1,2,…,N}, in the case when the structure and geometry of AA are defined by the properties BkBk, 2≤k≤N2≤k≤N. We define the relation between the parameter k   and the “smoothness” of functions in terms of the Orlicz classes. As a consequence, we obtain some results on the “local smoothness conditions.” In particular, the theorem is proved for the convergence of Walsh–Fourier series on an arbitrary open set Ω⊂INΩ⊂IN under the minimal conditions imposed on the smoothness of the function on this set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 435, Issue 1, 1 March 2016, Pages 765–782
نویسندگان
, ,