کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614650 1339296 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic length of bifurcation curves related to inverse bifurcation problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Asymptotic length of bifurcation curves related to inverse bifurcation problems
چکیده انگلیسی

We consider the nonlinear eigenvalue problemu″(t)+λf(u(t))=0,u(t)>0,t∈I=:(−1,1),u(1)=u(−1)=0, where f(u)=u+g(u)f(u)=u+g(u) and λ>0λ>0 is a parameter. Our interest is the asymptotic length L(g,α)L(g,α) of the bifurcation curve λ=λ(g,α)λ=λ(g,α) (α=‖uλ‖∞>0α=‖uλ‖∞>0). By the notion of L(g,α)L(g,α), we will propose a new framework of inverse bifurcation problems. Precisely, we consider whether it is possible to characterize the unknown nonlinear term g(u)g(u) by L(g,α)L(g,α). If g(u)=g1(u)=(u/2)sin⁡ug(u)=g1(u)=(u/2)sin⁡u or g2(u)=u+(1/2)sin⁡ug2(u)=u+(1/2)sin⁡u, then the bifurcation curves λ=λ(gi,α)λ=λ(gi,α) (i=1,2i=1,2) are continuous functions of α>0α>0 and λ(gi,α)→π2/4λ(gi,α)→π2/4 as α→∞α→∞. Furthermore, they intersect the line λ=π2/4λ=π2/4 infinitely many times as α→∞α→∞. In this paper, by establishing the precise asymptotic formula for λ(gi,α)λ(gi,α) for α≫1α≫1, we obtain the precise asymptotic length L(gi,α)L(gi,α) of λ(gi,α)λ(gi,α) for α≫1α≫1. Then we consider the set {g∈C2(R¯+):λ(g,α)→π2/4 as α→∞}, and study the existence and non-existence of g   whose asymptotic formula for L(g,α)L(g,α) is equal to those of L(gi,α)L(gi,α) up to the second term.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 438, Issue 2, 15 June 2016, Pages 629–642
نویسندگان
,