کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614704 1339297 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the zeros of the generalized Euler–Frobenius Laurent polynomial and reconstruction of cardinal splines of polynomial growth from local average samples
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the zeros of the generalized Euler–Frobenius Laurent polynomial and reconstruction of cardinal splines of polynomial growth from local average samples
چکیده انگلیسی

Let h(t)h(t) be a nonnegative measurable function supported in [−12,12] and Md(t)=(χ[−12,12]⋆χ[−12,12]⋆⋯⋆χ[−12,12])(t)(d+1 times)(d+1 times) be the central B-spline of degree d  . We show that the roots of the generalized Euler–Frobenius Laurent polynomial defined by Eh,d(z):=∑n∈Z(h⋆Md)(n)znEh,d(z):=∑n∈Z(h⋆Md)(n)zn are simple, negative and all are different from −1. As a consequence of this result, we show that for every sequence {yn}n∈Z∈RZ{yn}n∈Z∈RZ of samples having polynomial growth and nonnegative measurable function h   supported in [−12,12], there is a unique spline f of degree d   with polynomial growth satisfying (f⋆h)(n)=yn,n∈Z(f⋆h)(n)=yn,n∈Z. The presented work answers affirmatively the open problem posed in Pérez-Villalón and Portal (2012) [9].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 432, Issue 2, 15 December 2015, Pages 983–993
نویسندگان
, ,