کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614877 1339302 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weak compactness is not equivalent to the fixed point property in c
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Weak compactness is not equivalent to the fixed point property in c
چکیده انگلیسی

We show that there exists a non-weakly compact, closed, bounded, convex subset W   of the Banach space of convergent sequences (c,‖⋅‖∞)(c,‖⋅‖∞), such that every nonexpansive mapping T:W⟶WT:W⟶W has a fixed point. This answers a question left open in the 2003 and 2004 papers of Dowling, Lennard and Turett. This is also the first example of a non-weakly compact, closed, bounded, convex subset W of a Banach space X   isomorphic to c0c0, for which W has the fixed point property for nonexpansive mappings. We also prove that the sets W   may be perturbed to a large family of non-weakly compact, closed, bounded, convex subsets WqWq of (c,‖⋅‖∞)(c,‖⋅‖∞) with the fixed point property for nonexpansive mappings; and we discuss similarities and differences with work of Goebel and Kuczumow concerning analogous subsets of ℓ1ℓ1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 431, Issue 1, 1 November 2015, Pages 471–481
نویسندگان
, , ,