کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614931 1339303 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterizations of Besov and Triebel–Lizorkin spaces via averages on balls
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Characterizations of Besov and Triebel–Lizorkin spaces via averages on balls
چکیده انگلیسی

Let ℓ∈Nℓ∈N and p∈(1,∞]p∈(1,∞]. In this article, the authors prove that the sequence {f−Bℓ,2−kf}k∈Z{f−Bℓ,2−kf}k∈Z consisting of the differences between f   and the ball average Bℓ,2−kfBℓ,2−kf characterizes the Besov space B˙p,qα(Rn) with q∈(0,∞]q∈(0,∞] and the Triebel–Lizorkin space F˙p,qα(Rn) with q∈(1,∞]q∈(1,∞] when the smoothness order α∈(0,2ℓ)α∈(0,2ℓ). More precisely, it is proved that f−Bℓ,2−kff−Bℓ,2−kf plays the same role as the approximation to the identity φ2−k⁎fφ2−k⁎f appearing in the definitions of B˙p,qα(Rn) and F˙p,qα(Rn). The corresponding results for inhomogeneous Besov and Triebel–Lizorkin spaces are also obtained. These results, for the first time, give a way to introduce Besov and Triebel–Lizorkin spaces with any smoothness order in (0,2ℓ)(0,2ℓ) on spaces of homogeneous type, where ℓ∈Nℓ∈N.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 433, Issue 2, 15 January 2016, Pages 1350–1368
نویسندگان
, , , ,