کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614972 1339304 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric properties of domains related to μ-synthesis
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Geometric properties of domains related to μ-synthesis
چکیده انگلیسی

In the paper we study the geometric properties of a large family of domains, called the generalized tetrablocks, related to the μ  -synthesis, containing both the family of the symmetrized polydiscs and the family of the μ1,nμ1,n-quotients EnEn, n≥2n≥2, introduced recently by G. Bharali. It is proved that the generalized tetrablock cannot be exhausted by domains biholomorphic to convex ones. Moreover, it is shown that the Carathéodory distance and the Lempert function are not equal on a large subfamily of the generalized tetrablocks, containing i.a. EnEn, n≥4n≥4. We also derive a number of geometric properties of the generalized tetrablocks as well as the μ1,nμ1,n-quotients. As a by-product, we get that the pentablock, another domain related to the μ-synthesis problem introduced recently by J. Agler, Z.A. Lykova, and N.J. Young, cannot be exhausted by domains biholomorphic to convex ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 430, Issue 1, 1 October 2015, Pages 126–143
نویسندگان
,