کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4614977 1339304 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal extensions of the Banach–Stone theorem
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Optimal extensions of the Banach–Stone theorem
چکیده انگلیسی

Let C0(K,X)C0(K,X) denote the Banach space of all X-valued continuous functions defined on the locally compact Hausdorff space K which vanish at infinity, provided with the supremum norm. We prove that if X is a real Banach space and T   is an isomorphism from C0(K1,X)C0(K1,X) onto C0(K2,X)C0(K2,X) satisfyingJ(X)‖T‖‖T−1‖<2,J(X)‖T‖‖T−1‖<2, where J(X)J(X) is the James constant of X  , then K1K1 is homeomorphic to K2K2. In the complex case, we provide a similar result for reflexive spaces X  . In other words, we obtain a vector-valued extension of the classical Amir–Cambern theorem (X=RX=R or X=CX=C) which at the same time unifies and strengthens several generalizations of the classical Banach–Stone theorem due to Cambern (1976) and (1985), Behrends–Cambern (1988) and Jarosz (1989). In the case where X=lpX=lp, 2≤p<∞2≤p<∞, our results are optimal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 430, Issue 1, 1 October 2015, Pages 193–204
نویسندگان
, , ,