کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4615180 | 1339309 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pointwise convergence of double Fourier integrals of functions of bounded variation over R2
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate the pointwise convergence and uniform boundedness of the symmetric rectangular partial (also called Dirichlet) integrals of the double Fourier integral of a function that is Lebesgue integrable and of bounded variation over R2. Our theorems are the two-dimensional extensions of those proved in [7] in the case of single Fourier integral. Our methods do not rely on the localization principle of the convergence of the Fourier integral and on the second mean value theorem involving a monotone function. Instead, we use integration by parts extended to improper Riemann-Stieltjes integral, and the reduction of such integrals to Lebesgue integrals. As corollaries of our main theorems, we obtain two-dimensional extensions of such results that are known for single Fourier integrals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 424, Issue 2, 15 April 2015, Pages 1530-1543
Journal: Journal of Mathematical Analysis and Applications - Volume 424, Issue 2, 15 April 2015, Pages 1530-1543
نویسندگان
Ferenc Móricz,