کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615222 1339310 2015 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The monotonicity of the apsidal angle in power-law potential systems
ترجمه فارسی عنوان
یکنواختی زاویه جاذبه در سیستم های بالقوه قدرت قانون
کلمات کلیدی
سیستم های مرکزی نیرو، پتانسیل همگن، میزان دفاعی، یکنواختی زاویه جاذبه، مشکل دو بدن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

In a central force system the apsidal angle is the angle at the centre of force between two consecutive apsides and measures the precession rate of the line of apsis. The apsidal angle has applications in different fields and Newton's apsidal precession theorem has been extensively studied by astronomers, physicist and mathematicians. The perihelion precession of Mercury, the dynamics of galaxies, the vortex dynamics, the JWKB quantisation condition are some examples where the apsidal angle is of interest. In case of eccentric orbits and forces far from inverse square, numerical investigations provide evidence of the monotonicity of the apsidal angle with respect to the orbit parameters, such as the orbit eccentricity. However, no proof of this statement is available. In this paper central force systems with f(r)∼μr−(α+1)f(r)∼μr−(α+1) are considered. We prove that for any −2<α<1−2<α<1 the apsidal angle is a monotonic function of the orbital eccentricity, or equivalently of the angular momentum. As a corollary, the conjecture stating the absence of isolated cases of zero precession is proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 428, Issue 1, 1 August 2015, Pages 653–676
نویسندگان
,