کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615299 1339312 2015 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forcing and entropy of strip patterns of quasiperiodic skew products in the cylinder
ترجمه فارسی عنوان
فشردن و انتروپی الگوهای خطی محصولات ناهموار فصل در سیلندر
کلمات کلیدی
سیستم های اجباری چهار سالانه در سیلندر، دینامیک ترکیبی، تحریک انتروپی، چرخش غیر منطقی،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We extend the results and techniques from [7] to study the combinatorial dynamics (forcing) and entropy of quasiperiodically forced skew-products on the cylinder. For these maps we prove that a cyclic permutation τ forces a cyclic permutation ν as interval patterns if and only if τ forces ν as cylinder patterns. This result gives as a corollary the Sharkovskiĭ Theorem for quasiperiodically forced skew-products on the cylinder proved in [7]. Next, the notion of s-horseshoe is defined for quasiperiodically forced skew-products on the cylinder and it is proved, as in the interval case, that if a quasiperiodically forced skew-product on the cylinder has an s-horseshoe then its topological entropy is larger than or equals to log⁡(s). Finally, if a quasiperiodically forced skew-product on the cylinder has a periodic orbit with pattern τ, then h(F)≥h(fτ), where fτ denotes the connect-the-dots interval map over a periodic orbit with pattern τ. This implies that if the period of τ is 2nq with n≥0 and q≥1 odd, then h(F)≥log⁡(λq)2n, where λ1=1 and, for each q≥3, λq is the largest root of the polynomial xq−2xq−2−1. Moreover, for every m=2nq with n≥0 and q≥1 odd, there exists a quasiperiodically forced skew-product on the cylinder Fm with a periodic orbit of period m such that h(Fm)=log⁡(λq)2n. This extends the analogous result for interval maps to quasiperiodically forced skew-products on the cylinder.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 429, Issue 1, 1 September 2015, Pages 542-561
نویسندگان
, , ,