کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615469 1339317 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smoothness via directional smoothness and Marchaud's theorem in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Smoothness via directional smoothness and Marchaud's theorem in Banach spaces
چکیده انگلیسی

Classical Marchaud's theorem (1927) asserts that if f   is a bounded function on [a,b][a,b], k∈Nk∈N, and the (k+1)(k+1)th modulus of smoothness ωk+1(f;t)ωk+1(f;t) is so small that η(t)=∫0tωk+1(f;s)sk+1ds<+∞ for t>0t>0, then f∈Ck((a,b))f∈Ck((a,b)) and f(k)f(k) is uniformly continuous with modulus cη   for some c>0c>0 (i.e. in our terminology f   is Ck,cηCk,cη-smooth). Using a known version of the converse of Taylor theorem we easily deduce Marchaud's theorem for functions on certain open connected subsets of Banach spaces from the classical one-dimensional version. In the case of a bounded subset of RnRn our result is more general than that of H. Johnen and K. Scherer (1973), which was proved by quite a different method. We also prove that if a locally bounded mapping between Banach spaces is Ck,ωCk,ω-smooth on every line, then it is Ck,cωCk,cω-smooth for some c>0c>0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 423, Issue 1, 1 March 2015, Pages 594–607
نویسندگان
, ,