کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4615539 | 1339321 | 2015 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka–Volterra type with a rational first integral of degree two
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study the number of limit cycles which bifurcate from the periodic orbits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2, under polynomial perturbations of degree n. The analysis is carried out by estimating the number of zeros of the corresponding Abelian integrals. Moreover, using Chebyshev criterion , we show that the sharp upper bound for the number of zeros of the Abelian integrals defined on each period annulus is 3 for n=3n=3. The simultaneous bifurcation and distribution of limit cycles for the system with two period annuli under cubic polynomial perturbations are considered. All configurations (u,v)(u,v) with 0≤u,v≤30≤u,v≤3, u+v≤5u+v≤5 are realizable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 425, Issue 2, 15 May 2015, Pages 788–806
Journal: Journal of Mathematical Analysis and Applications - Volume 425, Issue 2, 15 May 2015, Pages 788–806
نویسندگان
Xiuli Cen, Yulin Zhao, Haihua Liang,