کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615604 1339323 2015 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The abstract Cauchy problem for dissipative operators with respect to metric-like functionals
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The abstract Cauchy problem for dissipative operators with respect to metric-like functionals
چکیده انگلیسی

This paper is devoted to a characterization of semigroups of Lipschitz operators on a closed subset D of a Banach space X and the abstract Cauchy problem for an operator A in X satisfying the following condition: There exists a proper lower semicontinuous functional φ from X   into [0,∞][0,∞] such that the effective domain of φ   is D(A)D(A) and such that limn→∞⁡Axn=Axlimn→∞⁡Axn=Ax in X   for any x∈D(A)x∈D(A) and any sequence {xn}{xn} in D(A)D(A) satisfying two conditions limn→∞⁡xn=xlimn→∞⁡xn=x in X   and limsupn→∞φ(xn)≤φ(x). The main result asserts that a semigroup of Lipschitz operators on D can be generated by an operator A satisfying the above-mentioned condition, a dissipative condition with respect to a metric-like functional and a subtangential condition. The Kirchhoff equations with acoustic boundary conditions are solved by the method based on the abstract result with the construction of suitable Liapunov functionals and the use of a metric-like functional on a suitable set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 421, Issue 1, 1 January 2015, Pages 539–566
نویسندگان
,