کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4615712 | 1339327 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A note on polynomial convexity of the union of finitely many totally-real planes in C2
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we discuss local polynomial convexity at the origin of the union of finitely many totally-real planes through 0âC2. The planes, say P0,â¦,PN, satisfy a mild transversality condition that enables us to view them in Weinstock's normal form, i.e., P0=R2 and Pj=M(Aj):=(Aj+iI)R2, j=1,â¦,N, where each Aj is a 2Ã2 matrix with real entries. Weinstock has solved the problem completely for pairs of transverse, maximally totally-real subspaces in Cnân⩾2. Using a characterization of simultaneous triangularizability of 2Ã2 matrices over the reals, given by Florentino, we deduce a sufficient condition for local polynomial convexity of the union of the above planes at 0âC2. Weinstock's theorem for C2 occurs as a special case of our result.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 418, Issue 2, 15 October 2014, Pages 842-851
Journal: Journal of Mathematical Analysis and Applications - Volume 418, Issue 2, 15 October 2014, Pages 842-851
نویسندگان
Sushil Gorai,