کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4615843 | 1339330 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The fundamental equations for inversion of operator pencils on Banach space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove that the resolvent of a linear operator pencil is analytic on an open annulus if and only if the coefficients of the Laurent series satisfy a system of fundamental equations and are geometrically bounded. Our analysis extends earlier work on the fundamental equations to include the case where the resolvent has an isolated essential singularity. We find a closed form for the resolvent and use the fundamental equations to establish key spectral separation properties when the resolvent has only a finite number of isolated singularities. Finally we show that our results can also be applied to polynomial pencils.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 413, Issue 1, 1 May 2014, Pages 411–421
Journal: Journal of Mathematical Analysis and Applications - Volume 413, Issue 1, 1 May 2014, Pages 411–421
نویسندگان
Amie Albrecht, Phil Howlett, Charles Pearce,